NAG Fortran Library

Mark 21 News

1 Introduction

At Mark 21 of the NAG Fortran Library new functionality has been introduced in addition to improvements in existing areas. The Library now contains 1533 user-callable routines, all of which are documented, and 285 are new at this mark.

A new chapter on large scale eigenproblems has been introduced, and extensions have been included in the areas of optimization, dense and banded linear algebra, direct solution of large scale linear systems, simple statistical calculations, regression, random numbers, and special functions.

The new Chapter F12 (Large Scale Eigenproblems) has routines for the solution of symmetric and nonsymmetric standard and generalized large scale eigenvalue problems. Chapter F11 has been renamed as Large Scale Linear Systems, and new routines for the direct solution of sparse problems have been added.

Chapter E04 (Minimizing or Maximizing a Function) has been updated with new routines for the solution of LP, QP and nonlinear programming problems with sparse linear constraints.

Chapter F07 (Linear Equations (LAPACK)) and Chapter F08 (Least-squares and Eigenvalue Problems (LAPACK)) have been extended to include all the LAPACK driver routines, thus allowing the solution of most problems with a call to a single routine rather than multiple calls to LAPACK computational routines. A comprehensive suite of driver routines for the solution of dense and banded linear equations has also been added to Chapter F04 (Simultaneous Linear Equations).

Routines for Landau and Vavilov distributions have been added to Chapter G01 (Simple Calculations on Statistical Data), new routines for stepwise regression and mixed effects regression have been included in Chapter G02 (Correlation and Regression Analysis), and a number of new random number generators, including Copulas and improved quasi-random number generators have been added to Chapter G05 (Random Number Generators).

Variant routines for the log Gamma function, and Bessel function of the 1st kind have been added to Chapter S (Approximations of Special Functions).

The NAG Fortran Library Manual has undergone a fundamental change since Mark 20 and the Essential Introduction is *essential* reading for all users of the NAG Fortran Library.

2 New Routines

The 285 new user-callable routines included in the Fortran Library at Mark 21 are as follows.

- A00ACF Check availability of a valid licence key
- E04NPF Initialization routine for E04NQF
- E04NQF LP or QP problem (suitable for sparse problems)
- E04NRF Supply optional parameter values for E04NQF from external file
- E04NSF Set a single option for E04NQF from a character string
- E04NTF Set a single option for E04NQF from an INTEGER argument
- E04NUF Set a single option for E04NQF from a *double precision* argument
- E04NXF Get the setting of an INTEGER valued option of E04NOF
- E04NYF Get the setting of a *double precision* valued option of E04NQF
- E04VGF Initialization routine for E04VHF
- E04VHF General sparse nonlinear optimizer
- E04VJF Determine the pattern of nonzeros in the Jacobian matrix for E04VHF
- E04VKF Supply optional parameter values for E04VHF from external file
- E04VLF Set a single option for E04VHF from a character string
- E04VMF Set a single option for E04VHF from an INTEGER argument
- E04VNF Set a single option for E04VHF from a *double precision* argument
- E04VRF Get the setting of an INTEGER valued option of E04VHF

[NP3657/21]

E04VSF	Get the setting of a <i>double precision</i> valued option of E04VHF		
E04WCF	Initialization routine for E04WDF		
E04WDF	Solves the nonlinear programming (NP) problem		
E04WEF	Supply optional parameter values for E04WDF from external file		
E04WFF	Set a single option for E04WDF from a character string		
E04WGF	Set a single option for E04WDF from an INTEGER argument		
E04WHF	Set a single option for E04WDF from a <i>double precision</i> argument		
E04WJF	Determine whether an E04WDF option has been set or not		
E04WKF	Get the setting of an INTEGER valued option of E04WDF		
E04WLF	Get the setting of a <i>double precision</i> valued option of E04WDF		
F04BAF	Computes the solution and error-bound to a real system of linear equations		
F04BBF	Computes the solution and error-bound to a real banded system of linear equations		
F04BCF	Computes the solution and error-bound to a real tridiagonal system of linear equations		
F04BDF	Computes the solution and error-bound to a real symmetric positive-definite system of linear		
104DDI	equations		
F04BEF	Computes the solution and error-bound to a real symmetric positive-definite system of linear		
I UHDLI	equations, packed storage		
F04BFF	Computes the solution and error-bound to a real symmetric positive-definite banded system of		
104011	linear equations		
F04BGF	Computes the solution and error-bound to a real symmetric positive-definite tridiagonal system		
101201	of linear equations		
F04BHF	Computes the solution and error-bound to a real symmetric system of linear equations		
F04BJF	Computes the solution and error-bound to a real symmetric system of linear equations, packed		
	storage		
F04CAF	Computes the solution and error-bound to a complex system of linear equations		
F04CBF	Computes the solution and error-bound to a complex banded system of linear equations		
F04CCF	Computes the solution and error-bound to a complex tridiagonal system of linear equations		
F04CDF	Computes the solution and error-bound to a complex Hermitian positive-definite system of		
	linear equations		
F04CEF	Computes the solution and error-bound to a complex Hermitian positive-definite system of		
	linear equations, packed storage		
F04CFF	Computes the solution and error-bound to a complex Hermitian positive-definite banded		
FAACOF	system of linear equations		
F04CGF	Computes the solution and error-bound to a complex Hermitian positive-definite tridiagonal system of linear equations		
F04CHF	Computes the solution and error-bound to a complex Hermitian system of linear equations		
F04CJF	Computes the solution and error-bound to a complex Hermitian system of linear equations,		
r04CJr	packed storage		
F04DHF	Computes the solution and error-bound to a complex symmetric system of linear equations		
F04DJF	Computes the solution and error-bound to a complex symmetric system of linear equations,		
I'04DJI	packed storage.		
F06FEF	Multiply real vector by reciprocal of scalar		
F06KEF			
F06RNF	Multiply complex vector by reciprocal of real scalar 1-norm, ∞ -norm, Frobenius norm, largest absolute element, real tridiagonal matrix		
F06RPF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, real symmetric tridiagonal matrix		
F06TAF	Matrix-vector product, complex symmetric matrix		
F06TBF	Rank-1 update, complex symmetric matrix		
F06TCF			
F06TDF	Matrix-vector product, complex symmetric packed matrix		
F06UNF	Rank-1 update, complex symetric packed matrix 1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex tridiagonal matrix		
F06UPF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex Hermitian tridiagonal matrix		
F07AAF	Computes the solution to a real system of linear equations		
F07ABF	Uses the LU factorization to compute the solution, error-bound and condition estimate for a		
1 V// 1D1	real system of linear equations		
F07AFF	Computes row and column scalings intended to equilibrate a general real matrix and reduce its		
	condition number		
F07ANF	Computes the solution to a complex system of linear equations		

F07APF	Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex system of linear equations
F07ATF	Computes row and column scalings intended to equilibrate a general complex matrix and reduce its condition number
F07BAF	Computes the solution to a real banded system of linear equations
F07BBF	Uses the LU factorization to compute the solution, error-bound and condition estimate for a real banded system of linear equations
F07BFF	Computes row and column scalings intended to equilibrate a real banded matrix and reduce its condition number
F07BNF	Computes the solution to a complex banded system of linear equations
F07BPF	Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex banded system of linear equations
F07BTF	Computes row and column scalings intended to equilibrate a complex banded matrix and reduce its condition number
F07CAF	Computes the solution to a real tridiagonal system of linear equations
F07CBF	Uses the LU factorization to compute the solution, error-bound and condition estimate for a real tridiagonal system of linear equations
F07CDF	LU factorization of real tridiagonal matrix
F07CEF	Solves a real tridiagonal system of linear equations using the LU factorization computed by F07CDF (DGTTRF)
F07CGF	Estimates the reciprocal of the condition number of a real tridiagonal matrix using the LU factorization computed by F07CDF (DGTTRF)
F07CHF	Refined solution with error bounds of real tridiagonal system of linear equations, multiple right-hand sides
F07CNF	Computes the solution to a complex tridiagonal system of linear equations
F07CPF	Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex tridiagonal system of linear equations
F07CRF	LU factorization of complex tridiagonal matrix
F07CSF	Solves a complex tridiagonal system of linear equations using the LU factorization computed by F07CDF (DGTTRF)
F07CUF	Estimates the reciprocal of the condition number of a complex tridiagonal matrix using the LU factorization computed by F07CDF (DGTTRF)
F07CVF	Refined solution with error bounds of complex tridiagonal system of linear equations, multiple right-hand sides
F07FAF	Computes the solution to a real symmetric positive-definite system of linear equations
F07FBF	Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive-definite system of linear equations
F07FFF	Computes row and column scalings intended to equilibrate a real symmetric positive-definite matrix and reduce its condition number
F07FNF	Computes the solution to a complex Hermitian positive-definite system of linear equations
F07FPF	Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive-definite system of linear equations
F07FTF	Computes row and column scalings intended to equilibrate a complex Hermitian positive- definite matrix and reduce its condition number
F07GAF	Computes the solution to a real symmetric positive-definite system of linear equations, packed storage
F07GBF	Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive-definite system of linear equations, packed storage
F07GFF	Computes row and column scalings intended to equilibrate a real symmetric positive-definite matrix and reduce its condition number, packed storage
F07GNF	Computes the solution to a complex Hermitian positive-definite system of linear equations, packed storage
F07GPF	Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive-definite system of linear equations, packed storage
F07GTF	Computes row and column scalings intended to equilibrate a complex Hermitian positive- definite matrix and reduce its condition number, packed storage
F07HAF	Computes the solution to a real symmetric positive-definite banded system of linear equations
F07HBF	Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive-definite banded system of linear equations

F07HFF	Computes row and column scalings intended to equilibrate a real symmetric positive-definite banded matrix and reduce its condition number	
F07HNF	Computes the solution to a complex Hermitian positive-definite banded system of linear equations	
F07HPF	Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive-definite banded system of linear equations	
F07HTF	Computes row and column scalings intended to equilibrate a complex Hermitian positive- definite banded matrix and reduce its condition number	
F07JAF	Computes the solution to a real symmetric positive-definite tridiagonal system of linear equations	
F07JBF	Uses the modified Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive-definite tridiagonal system of linear equations	
F07JDF	Computes the modified Cholesky factorization of a real symmetric positive-definite tridiagonal matrix	
F07JEF	Solves a real symmetric positive-definite tridiagonal system using the modified Cholesky factorization computed by F07JDF (DPTTRF)	
F07JGF F07JHF	Computes the reciprocal of the condition number of a real symmetric positive-definite tridiagonal system using the modified Cholesky factorization computed by F07JDF (DPTTRF) Refined solution with error bounds of real symmetric positive-definite tridiagonal system of	
F07JNF	linear equations, multiple right-hand sides Computes the solution to a complex Hermitian positive-definite tridiagonal system of linear	
	equations	
F07JPF	Uses the modified Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive-definite tridiagonal system of linear equations	
F07JRF	Computes the modified Cholesky factorization of a complex Hermitian positive-definite tridiagonal matrix	
F07JSF	Solves a complex Hermitian positive-definite tridiagonal system using the modified Cholesky factorization computed by F07JRF (ZPTTRF)	
F07JUF	Computes the reciprocal of the condition number of a complex Hermitian positive-definite tridiagonal system using the modified Cholesky factorization computed by F07JRF (ZPTTRF)	
F07JVF	Refined solution with error bounds of complex Hermitian positive-definite tridiagonal system of linear equations, multiple right-hand sides	
F07MAF F07MBF	Computes the solution to a real symmetric system of linear equations Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations	
F07MNF	Computes the solution to a complex Hermitian system of linear equations	
F07MPF	Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian	
	system of linear equations	
F07NNF	Computes the solution to a complex symmetric system of linear equations	
F07NPF	Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations	
F07PAF	Computes the solution to a real symmetric system of linear equations, packed storage	
F07PBF	Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations, packed storage	
F07PNF	Computes the solution to a complex Hermitian system of linear equations, packed storage	
F07PPF	Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian system of linear equations, packed storage	
F07QNF	Computes the solution to a complex symmetric system of linear equations, packed storage	
F07QPF	Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations, packed storage	
F08AAF	Solves an overdetermined or underdetermined real linear system	
F08ANF	Solves an overdetermined or underdetermined complex linear system	
F08BAF	Computes the minimum-norm solution to a real linear least-squares problem	
F08BFF	QR factorization of real general rectangular matrix with column pivoting, using BLAS-3	
F08BHF	Reduces a real upper trapezoidal matrix to upper triangular form	
F08BKF	Apply orthogonal transformation determined by F08BHF (DTZRZF)	
F08BNF	Computes the minimum-norm solution to a complex linear least-squares problem	
F08BTF	QR factorization of complex general rectangular matrix with column pivoting, using BLAS-3	
F08BVF	Reduces a complex upper trapezoidal matrix to upper triangular form	

F08BXF	Apply unitary transformation determined by F08BVF (ZTZRZF)		
F08CEF	<i>QL</i> factorization of real general rectangular matrix		
F08CFF	Form all or part of orthogonal <i>Q</i> from <i>QL</i> factorization determined by F08CEF (DGEQLF)		
F08CGF	Apply orthogonal transformation determined by F08CEF (DGEQLF)		
F08CHF	<i>RQ</i> factorization of real general rectangular matrix		
F08CJF	Form all or part of orthogonal Q from RQ factorization determined by F08CHF (DGERQF)		
F08CKF	Apply orthogonal transformation determined by F08CHF (DGERQF)		
F08CSF	<i>QL</i> factorization of complex general rectangular matrix		
F08CTF	Form all or part of orthogonal <i>Q</i> from <i>QL</i> factorization determined by F08CSF (ZGEQLF)		
F08CUF	Apply unitary transformation determined by F08CSF (ZGEQLF)		
F08CUF F08CVF			
F08CVF F08CWF	RQ factorization of complex general rectangular matrix		
	Form all or part of orthogonal Q from RQ factorization determined by F08CVF (ZGERQF)		
F08CXF	Apply unitary transformation determined by F08CVF (ZGERQF)		
F08FAF	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix		
F08FBF	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix		
F08FDF	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix		
	(Relatively Robust Representations)		
F08FLF	Computes the reciprocal condition numbers for the eigenvectors of a real symmetric or		
	complex Hermitian matrix or for the left or right singular vectors of a general matrix		
F08FNF	Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix		
F08FPF	Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix		
F08FRF	Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix		
	(Relatively Robust Representations)		
F08GAF	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed		
	storage		
F08GBF	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix,		
	packed storage		
F08GNF	Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix, packed		
	storage		
F08GPF	Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix,		
	packed storage		
F08HAF	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix		
F08HBF	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix		
F08HNF	Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix		
F08HPF	Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band		
	matrix		
F08JAF	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix		
F08JBF	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal		
	matrix		
F08JDF	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal		
	matrix (Relatively Robust Representations)		
F08JHF	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix		
1 000111	or a matrix reduced to this form (divide-and-conquer)		
F08JLF	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix		
100321	or a symmetric matrix reduced to this form (Relatively Robust Representations)		
F08JVF	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix		
1003 11	or a complex Hermitian matrix reduced to this form (divide-and-conquer)		
F08JYF	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix		
100511	or a complex Hermitian matrix reduced to this form (Relatively Robust Representations)		
F08KAF	Computes the minimum-norm solution to a real linear least-squares problem using singular		
1 0010711	value decomposition		
F08KBF	Computes the singular value decomposition of a real matrix, optionally computing the left and/		
TUOKDI	or right singular vectors		
F08KCF	Computes the minimum-norm solution to a real linear least-squares problem using singular		
TUOKUI	value decomposition (divide-and-conquer)		
F08KDF	Computes the singular value decomposition of a real matrix, optionally computing the left and/		
TUOKDE	or right singular vectors (divide-and-conquer)		
F08KNF	Computes the minimum-norm solution to a complex linear least-squares problem using		
TVONINE	A A THORNE THE THE THE THE THE A COMPLEX THE A LEAST-SUBJES DIDDLETH USING		

F08KPF	Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors
F08KQF	Computes the minimum-norm solution to a complex linear least-squares problem using
F08KRF	singular value decomposition (divide-and-conquer) Computes the singular value decomposition of a complex matrix, optionally computing the left
F08MDF	and/or right singular vectors (divide-and-conquer) Computes the singular value decomposition of a real bidiagonal matrix, optionally computing
	the singular vectors (divide-and-conquer)
F08NAF	Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix
F08NBF	Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
F08NNF	Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix
F08NPF	Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
F08PAF	Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors
F08PBF	Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
F08PNF	Computes for complex square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
F08PPF	Computes for real square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
F08SAF	Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric- definite eigenproblem
F08SBF	Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
F08SCF	Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric- definite eigenproblem (divide-and-conquer)
F08SNF	Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
F08SPF	Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
F08SQF	Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem (divide-and-conquer)
F08TAF	Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric- definite eigenproblem, packed storage
F08TBF	Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
F08TCF	Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric- definite eigenproblem, packed storage (divide-and-conquer)
F08TNF	Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
F08TPF	Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
F08TQF	Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage (divide-and-conquer)
F08UAF	Computes all the eigenproblem, packed storage (drivide and conquer) Symmetric-definite eigenproblem
F08UBF	Computes selected eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
F08UCF	Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem (divide-and-conquer)

F08UNF	Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded		
F08UPF	generalized Hermitian-definite eigenproblem Computes selected eigenvalues, and optionally, the eigenvectors of a complex banded		
F08UQF	generalized Hermitian-definite eigenproblem Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem (divide-and-conquer)		
F08VAF	Computes the generalized singular value decomposition of a real matrix pair		
F08VEF	Computes one generalized singular value decomposition of a real matrix pair value decomposition of a real matrix pair		
F08VNF	Computes the generalized singular value decomposition of a complex matrix pair		
F08VSF	Computes orthogonal matrices as processing steps for computing the generalized singular value decomposition of a complex matrix pair		
F08WAF	Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors		
F08WBF	Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation,		
F08WNF	the reciprocal condition numbers for the eigenvalues and for the right eigenvectors Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors		
F08WPF	Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing		
	transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors		
F08XAF	Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors		
F08XBF	Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues		
F08XNF	Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors		
F08XPF	Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues		
F08YEF	Computes the generalized singular value decomposition of a real upper triangular (or trapezoidal) matrix pair		
F08YFF	Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation		
F08YGF	Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces		
F08YHF	Solves the real-valued generalized Sylvester equation		
F08YLF	Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a real matrix pair in generalized real Schur canonical form		
F08YSF	Computes the generalized singular value decomposition of a complex upper triangular (or trapezoidal) matrix pair		
F08YTF	Reorders the generalized Schur decomposition of a complex matrix pair using an unitary equivalence transformation		
F08YUF	Reorders the generalized Schur decomposition of a complex matrix pair using an unitary equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces		
F08YVF	Solves the complex generalized Sylvester equation		
F08YYF	Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a complex matrix pair in generalized Schur canonical form		
F08ZAF	Solves the real linear equality-constrained least-squares (LSE) problem		
F08ZBF	Solves a real general Gauss-Markov linear model (GLM) problem		
F08ZEF	Computes a generalized QR factorization of a real matrix pair		
F08ZFF	Computes a generalized RQ factorization of a real matrix pair		

- F08ZNF Solves the complex linear equality-constrained least-squares (LSE) problem
- F08ZPF Solves a complex general Gauss-Markov linear model (GLM) problem
- F08ZSF Computes a generalized *QR* factorization of a complex matrix pair
- F08ZTF Computes a generalized RQ factorization of a complex matrix pair
- F11MDF Real sparse nonsymmetric linear systems, setup for F11MEF
- F11MEF LU factorization of real sparse matrix
- F11MFF Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)
- F11MGF Estimate condition number of real matrix, matrix already factorized by F11MEF
- F11MHF Refined solution with error bounds of real system of linear equations, multiple right-hand sides
- F11MKF Real sparse nonsymmetric matrix multiply, compressed column storage
- F11MLF 1-norm, ∞ -norm, largest absolute element, real general matrix
- F11MMF Real sparse nonsymmetric linear systems, diagnostic for F11MEF
- F12AAF Initialization routine for (F12ABF) computing selected eigenvalues and, optionally,
- F12ABF eigenvectors of a real nonsymmetric sparse (standard or generalized) eigenproblem F12ABF Implements a reverse communication interface for the Implicitly Restarted Arnoldi iteration for computing selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse (standard or generalized) eigenproblem
- F12ACF Returns the converged approximations (as determined by F12ABF) to eigenvalues of a real nonsymmetric sparse (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace
- F12ADF Set a single option from a string (F12ABF/F12ACF/F12AGF)
- F12AEF Provides monitoring information for F12ABF
- F12AFF Initialization routine for (F12AGF) computing selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded (standard or generalized) eigenproblem
- F12AGF Computes approximations to selected eigenvalues of a real nonsymmetric banded (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace
- F12ANF Initialization routine for (F12APF) computing selected eigenvalues and, optionally, eigenvectors of a complex sparse (standard or generalized) eigenproblem
- F12APF Implements a reverse communication interface for the Implicitly Restarted Arnoldi iteration for computing selected eigenvalues and, optionally, eigenvectors of a complex sparse (standard or generalized) eigenproblem
- F12AQF Returns the converged approximations (as determined by F12ABF) to eigenvalues of a complex sparse (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace
- F12ARF Set a single option from a string (F12APF/F12AQF)
- F12ASF Provides monitoring information for F12APF
- F12FAF Initialization routine for (F12FBF) computing selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse (standard or generalized) eigenproblem
- F12FBF Implements a reverse communication interface for the Implicitly Restarted Arnoldi iteration for computing selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse (standard or generalized) eigenproblem
- F12FCF Returns the converged approximations (as determined by F12ABF) to eigenvalues of a real symmetric sparse (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace
- F12FDF Set a single option from a string (F12FBF/F12FCF/F12FGF)
- F12FEF Provides monitoring information for F12FBF
- F12FFF Initialization routine for (F12FGF) computing selected eigenvalues and, optionally, eigenvectors of a real symmetric banded (standard or generalized) eigenproblem
- F12FGF Computes approximations to selected eigenvalues of a real symmetric banded (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace
- G01ETF Landau distribution function $\Phi(\lambda)$
- G01EUF Vavilov distribution function $\Phi_V(\lambda;\kappa,\beta^2)$
- G01FTF Landau inverse function $\Psi(x)$

G01MTF	Landau density function $\phi(\lambda)$		
G01MUF	Vavilov density function $\phi_V(\lambda;\kappa,\beta^2)$		
G01PTF	Landau first moment function $\Phi_1(x)$		
G01QTF	Landau second moment function $\Phi_2(x)$		
G01RTF	Landau derivative function $\phi'(\lambda)$		
G01ZUF	Initialization routine for G01MUF and G01EUF		
G02EFF	Stepwise linear regression		
G02JAF	Linear mixed effects regression using Restricted Maximum Likelihood (REML)		
G02JBF	Linear mixed effects regression using Maximum Likelihood (ML)		
G05LXF	Generates a matrix of random numbers from a multivariate Student's <i>t</i> -distribution, seeds and generator passed explicitly		
G05LYF	Generates a matrix of random numbers from a multivariate Normal distribution, seeds and generator passed explicitly		
G05RAF	Generates a matrix of random numbers from a Gaussian Copula, seeds and generator passed		
	explicitly		
G05RBF	Generates a matrix of random numbers from a Student's <i>t</i> -Copula, seeds and generator passed explicitly		
G05YCF	Initializes the Faure generator (G05YDF/G05YJF/G05YKF)		
G05YDF	Generates a sequence of quasi-random numbers using Faure's method		
G05YEF	Initializes the Sobol generator (G05YFF/G05YJF/G05YKF)		
G05YFF	Generates a sequence of quasi-random numbers using Sobol's method		
G05YGF	Initializes the Neiderreiter generator (G05YHF/G05YJF/G05YKF)		
G05YHF	Generates a sequence of quasi-random numbers using Neiderreiter's method		
G05YJF	Generates a Normal quasi-random number sequence using Faure's, Sobol's or Neiderreiter's		
	method		
G05YKF	Generates a log-Normal quasi-random number sequence using Faure's, Sobol's or Neiderreiter's method		
S14AGF	Logarithm of the Gamma function $\ln \Gamma(z)$		
S18GKF	Bessel function of the 1st kind $J_{\alpha \pm n}(z)$		

3 Withdrawn Routines

The following routines have been withdrawn from the NAG Fortran Library at Mark 21. Warning of their withdrawal was included in the NAG Fortran Library Manual at Mark 20, together with advice on which routines to use instead. See the document 'Advice on Replacement Calls for Withdrawn/Superseded Routines' for more detailed guidance.

Withdrawn

Routine Replacement Routine(s)

F11BAF	F11BDF
F11BBF	F11BEF
F11BCF	F11BFF

4 Routines Scheduled for Withdrawal

The routines listed below are scheduled for withdrawal from the Fortran Library, because improved routines have now been included in the Library. Users are advised to stop using routines which are scheduled for withdrawal immediately and to use recommended replacement routines instead. See the document 'Advice on Replacement Calls for Withdrawn/Superseded Routines' for more detailed guidance, including advice on how to change a call to the old routine into a call to its recommended replacement.

The following routines will be withdrawn at Mark 22.

Routine Scheduled

Replacement Routine(s)
E04USF/E04USA
F11GDF
F11GEF

NAG	Fortran	Library	Manual
-----	---------	---------	--------

F11GCF	F11GFF
G05CAF	G05KAF
G05CBF	G05KBF
G05CCF	G05KCF
G05CFF	F06DFF
G05CGF	F06DFF
G05DAF	G05LGF
G05DBF	G05LJF
G05DCF	G05LNF
G05DDF	G05LAF
G05DEF	G05LKF
G05DFF	G05LLF
G05DHF	G05LCF
G05DJF	G05LBF
G05DKF	G05LDF
G05DPF	G05LMF
G05DRF	G05MEF
G05DYF	G05MAF
G05DZF	G05KEF
G05EAF	G05LZF
G05EBF	G05MAF
G05ECF	G05MKF
G05EDF	G05MJF
G05EEF	G05MCF
G05EFF	G05MLF
G05EGF	G05PAF
G05EHF	G05NAF
G05EJF	G05NBF
G05EWF	G05PAF
G05EXF	G05MZF
G05EYF	G05MZF
G05EZF	G05LZF
G05FAF	G05LGF
G05FBF	G05LJF
G05FDF	G05LAF
G05FEF	G05LEF
G05FFF	G05LFF
G05FSF	G05LPF
G05GAF	G05QAF
G05GBF	G05QBF
G05HDF	G05PCF
G05ZAF	No replacement document required
	r accanent required

The following routines have been superseded, but will not be withdrawn from the Library until Mark 23 at the earliest.

Superseded Routine	Replacement Routine(s)
E04NKF/E04NKA	E04NQF
E04NLF/E04NLA	E04NRF
E04NMF/E04NMA	E04NSF, E04NTF and E04NUF
E04UCF/E04UCA	E04WDF
F02BJF	F08WAF (DGGEV)
F02EAF	F08PAF (DGEES)
F02EBF	F08NAF (DGEEV)
F02FAF	F08FAF (DSYEV)
F02FCF	F08FBF (DSYEVX)
F02FDF	F08SAF (DSYGV)
F02FHF	F08UAF (DSBGV)

F02GAF	F08PNF (ZGEES)
F02GBF	F08NNF (ZGEEV)
F02GJF	F08WNF (ZGGEV)
F02HAF	F08FNF (ZHEEV)
F02HCF	F08FPF (ZHEEVX)
F02HDF	F08SNF (ZHEGV)
F02WEF	F08KBF (DGESVD)
F02XEF	F08KPF (ZGESVD)
F04AAF	F07AAF (DGESV)
F04ACF	F07HAF (DPBSV)
F04ADF	F07ANF (ZGESV)
F04ARF	F07AAF (DGESV)
F04EAF	F07CAF (DGTSV)
F04FAF	F07JAF (DPTSV), F07JDF (DPTTRF) and F07JEF (DPTTRS)
F04JAF	F08KAF (DGELSS)
F04JDF	F08KAF (DGELSS)
F04JLF	F08ZBF (DGGGLM)
F04JMF	F08ZAF (DGGLSE)
F04KLF	F08ZPF (ZGGGLM)
F04KMF	F08ZNF (ZGGLSE)
G05YAF	G05YCF, G05YDF, G05YEF, G05YFF, G05YGF, G05YHF, G05YJF and G05YKF
G05YBF	G05YCF, G05YDF, G05YEF, G05YFF, G05YGF, G05YHF, G05YJF and G05YKF